Good Agricultural Practices for Pecans

Lenny Wells University of Georgia

THE UNIVERSITY OF GEORGIA COLLEGE OF AGRICULTURAL & ENVIRONMENTAL SCIENCES

Good Agricultural Practices (GAPs) Reduce Risks of Microbial Contamination

- GAPs Topics
 - 1. Water
 - 2. Manure and Municipal Biosolids
 - 3. Worker Health and Hygiene
 - 4. Sanitary Facilities
 - 5. Field Sanitation
 - 6. Shelling/Cleaning Facilities
 - 7. Transportation
 - 8. Traceback

Why Should We Care?

Every year microbial contamination results in an estimated:

- 76 million cases of foodborne illness.
- 325,000 people hospitalized for foodborne illness.
- 5,200 needless deaths each year.
- Economic losses between 10-83 billion dollars.

How many outbreaks have been linked to Nuts?

Variety	Product	Pathogen	Year	Outbreak Location(s)
Almond	Raw whole	Salmonella Enteritidis PT 30	2000-01	Canada, USA
	Raw whole	<i>Salmonella</i> Enteritidis PT 9c	2004	Canada, USA
	Raw whole	Salmonella Enteritidis	2005-06	Sweden
Coconut	Desiccated	Salmonella typhi, Salmonella Senftenberg and possibly others	1953	Australia
	Desiccated	Salmonella Java PT Dundee	1999	United Kingdom
	Milk	Vibrio cholerae	1991	USA
Hazelnut	Conserve (for yogurt)	Clostridium botulinum	1989	United Kingdom
Peanut	Canned	Clostridium botulinum	1986	Taiwan
	Savory snack	<i>Salmonella</i> Agona PT 15	1994-95	United Kingdom, Israel
	Peanut butter	<i>Salmonella</i> Mbandaka	1996	Australia
	Flavored or roasted in-shell	<i>Salmonella</i> Stanleyand <i>Salmonella</i> Newport	2001	Australia, Canada, United Kingdom
	Peanut butter	Salmonella Tennessee	2006-07	USA
	Peanut butter, peanut butter-containing products	<i>Salmonella</i> Typhimurium	2008-09	USA
Sesame	Halva	Salmonella Typhimurium DT	2001	Australia, Sweden,
seed		104		Norway, United
				Kingdom, Germany
		Salmonella Montevideo	2002	Australia

Adapted from Danyluk et al., 2007

Intrinsic Safety of Pecans - Beliefs

- The thick shells of some nuts are thought to be an effective barrier to microbial penetration
- The presence of a hull or husk is thought to further reduce the risk of microbial invasion.
- The internal surface of a dry intact kernel picked from the tree is virtually sterile (Chipley and Heaton, 1971; Meyer and Vaghun, 1969)

Intrinsic Safety of Pecans - Reality

- Hull or shell splitting can occur on the prior to or after harvest
 - Different varieties have widely differing shell thicknesses
 - Birds, other vertebrates or insects may also damage the shell
 - Shells may crack along the suture during wetting or drying.
 - Pecan nut packing tissue is toxic to salmonella, affording some protection to initial contamination and survival (Beuchat and Heaton, 1974).

Pecan Outbreaks

• July 2009

 General Mills announces recall of certain lots of **Nature Valley Granola Nut Clusters**, due to the <u>possibility</u> that <u>pecans</u> used in the **Nut Clusters** might be "... tainted with Salmonella."

So what can be done?

- Prevention
 - Try to avoid contaminating the product in the first place.
 - Once food becomes contaminated, its almost impossible to clean completely.

GAPs - Water

- This consideration should include water used for irrigation, mixing pesticides and other foliar-applied products, equipment sanitation, product sanitation, and cooling operations.
- The operator should be aware of the source, distribution, and quality of all water utilized.

Water Carries Pathogens

- *E. coli* O157:H7 viewed primarily as a waterborne pathogen.
- Salmonella, Giardia and Cyclospora outbreaks on produce caused by contaminated water.

Spray Water Quality

- Use potable (drinking) water for pesticide sprays.
- When potable water is not available, test water quality and keep records.

GAPs – Manure and Municipal Biosolids

- Properly treated manure or biosolids can be an effective and safe fertilizer if the proper precautions are in place.
- Use treatments to reduce pathogens in manure and other organic materials. Treatments may be active (e.g., composting) or passive (e.g., aging).

GAPs – Manure and Municipal Biosolids

- Be aware that sitting manure treatment and storage sites close to orchards increases the risk of contamination.
- Consider factors such as slope and rainfall and the likelihood of runoff into orchard
- Use barriers or physical containment to secure storage and treatment sites.
- Do not apply manure to the orchard <180 days prior to harvest

Exclude Animals

- Manage rodents and birds in cleaning plants and storage areas.
- No dogs or other pets in the orchards.
- Keep wildlife out of production areas as much as possible.

Salmonella and nut production

- Grazing domestic animals is practiced in some regions
 - *E. coli* levels on pecans increased from 4% to 23% following grazing
 - Contamination on pecans increased to 36%, with grazing in a wet production year (Marcus and Amling, 1973)

Courtesy of Dr. M. Danyluk

GAPs – Worker Health and Hygiene

- Train employees to follow good hygiene practices.
- Establish a training program about health and hygiene. Include basics, such as proper handwashing techniques and the importance of using toilet facilities.
- Become familiar with typical signs and symptoms of infectious diseases.
- Offer protection to workers with cuts or lesions

GAPs – Sanitary Facilities

- Toilet facilities should be properly located.
- Toilet facilities should be accessible and clean.
- Toilet facilities and handwashing stations should be well-supplied.

GAPs – Field Sanitation

- Clean harvest containers or bins prior to use.
- Use harvesting equipment appropriately and keep it as clean as practicable.

GAPs – Cleaning Plants/Shelling Facilities

- Proper sorting and culling.
- Enforce Good Worker Hygiene.
- Exclude all animals from facility, especially insects, birds and rodents.
- Clean and Sanitize Equipment.
- Detectable Free Chlorine in Wash Waters.

GAPs - Transportation

- Good hygienic and sanitation practices should be used when loading, unloading, and inspecting pecans.
- Inspect transportation vehicles for cleanliness, odors, and obvious dirt and debris before loading.
- Avoid leaving harvested crop in the sun and maintain proper temperatures throughout the transportation process.
- Load pecans to minimize cracking.

GAPs - Traceback

- Documentation should include the source of the product, the date of harvest, farm identification, and a record of who handled the product.
- The product must be traceable from the farm through the accumulator, sheller, distributor, transporter, and retailer.

If you did not RECORD IT, you did not do it.

- Record keeping allows you to keep track of farming and packing operations and worker training.
- Record keeping documents your activities should this information ever be required.

Be Active and Be Ready

- Make changes to management practices as needed.
- Keep good records of all production practices.
- Teach employees the importance of prevention strategies and provide proper facilities.
- Work with upstream neighbors and local watershed committees on management goals.
- Update your plan regularly.