

2012 Pecan Tree Planting Survey

- 146 Respondents
- 102,784 trees
- 89% planted to new acreage
 - Accounts for 3768 acres
- Most of the inter-planting was done in Dougherty, Mitchell, and Lee Counties
- 1778 acres of abandoned orchards brought back in to production
- 277 acres of spaded trees
- Total of 5823 new acres

UGA Recommended Pecan Cultivars

Low Input	Medium Input	High Input	Conditional	Trial
Amling	Caddo	Desirable	Cape Fear	Byrd
McMillan*	Forkert*	Pawnee	Creek	Zinner*
Excel*	Oconee		Kiowa*	Lakota*
Elliott*	Sumner*			Mandan
Kanza*				Morrill

^{*}Type II—Stigma receptive before pollen mature

Effect of Sunlight and Air Movement on Yield---2012

Sunlight=1005 lum/ft² Yield=93.6 lbs/Tree

Effect of Sunlight and Air Movement on Yield---2013

Sunlight=1176 lum/ft² Yield=110.6/tree

Sunlight=996 lum/ft² Yield=68 lbs/tree

Irrigation Schedule Recommendations (gallons per tree)

	New		Old	
April	1800	(60 gal/day)	6750	(225 gal/day)
May	2880	(93 gal/day)	7905	(255 gal/day)
June	3600	(120 gal/day)	8550	(285 gal/day)
July	4500	(145 gal/day)	10,230	(330 gal/day)
August	11,160	(360 gal/day)	11,160	(360 gal/day)
September	10,800	(360 gal/day)	10,800	(360 gal/day)
Total	34740		55,395	
Average Per Day	189		303	

The Reduced Irrigation Schedule provides a 38% Reduction in irrigation water use with no significant effect on tree water stress, yield, or quality

Pecans are Perennial Crop Not an Annual Crop

- Respond differently to inputs
- Orchard soils are not tilled
- Row Crops grow from seed or young plants
 - Birth, Growth, Death in 6-8 months
 - Everything you do to annual crops affects it that year
 - Effects on perennial crops are often delayed and long term

Leaf Tissue Results

	Desired Range	Mean	% Low	% High	Sample Range
Leaf N	2.5-3.3%	2.77%	3	0	2.58-3.09
Leaf P	0.12-0.3%	0.14%	0	0	0.13-0.18
Leaf K ¹	1.1-2.5%	1.26%	45	0	1.04-1.50
Leaf Ca	1.0-1.5%	1.84%	0	48	1.37-2.36
Leaf Mg ²	0.35-0.6%	0.53%	7	0	0.32-0.66
Leaf S	0.25-0.5%	0.24%	3	0	0.22-0.28
Leaf Fe	50-300ppm	71.7ppm	0	0	50-142
Leaf Zn	50-100ppm	125ppm	7	34	41-292
Leaf B	50-100ppm	84ppm	0	20	50-146
Leaf Cu	6-30ppm	9.8ppm	0	0	6-14
Leaf Mn	100-800ppm	562ppm	0	21	190-1251
Leaf Ni	?	2.5ppm	?	?	1-11

Soil Sample Results

	Desired Range (lbs/A)	Mean (lbs/A)	% Low	% High	Sample Range (lbs/A)
Soil P	30-60	98.3	0	90	48-183
Soil K	100-150	153	0	34	94-361
Soil Ca	400-900	988	3	48	192-2241
Soil Mg	90-100	184	7	90	35-436
Soil S	10-50	26.6	3	0	4-41
Soil Fe	12-25	22.6	3	24	8-76
Soil Zn	15-20	25	28	55	3.9-55.3
Soil B	0.5-1.0	0.99	41	14	0.22-6.0
Soil Cu	0.5-1.5	1.1	14	10	0.2-7.2
Soil Mn	15-40	31.9	28	7	13-45
Soil Ni ¹	?	1.26	N/A	N/A	1-7
рН	6.0-6.5	5.96	41	12	5.3-7.0

How Often Should You Lime the Orchard?

рŀ	H 6.0-6.5	5.96	41	12	5.3-7.0
----	-----------	------	----	----	---------

- High N rates can lower pH in upper soil layers (2-3") in the short term
- Lime applied to surface raises soil pH in upper 2-3" only
- Once soil pH reaches 6-6.5 below surface layer, it tends to remain there for a long time
- There is <u>NO</u> research-based evidence for increased yield and growth of mature pecan trees with lime application (Hunter and Hammar, 1947; Johnson and Hagler, 1955; Hagler et al. 1957; Brooks, 1964; Hunter, 1965; Worley et al. 1972)
- Excessive liming can lead to Zn deficiency, mouse ear, and problems with K uptake
- Lime should be applied to mature orchards every 3rd year <u>at most</u> on SE Coastal Plain soils (6.0-6.5); Keep N rates between 75-125 lbs/acre
- Savings: \$20/acre

How Often Should You Soil Apply Phosphorous

	Desired Range (lbs/A)	Mean (lbs/A)	% Low	% High	Sample Range (lbs/A)
Soil P	30-60	98.3	0	90	48-183

- P relatively immobile and accumulates on soil surface in non-tilled soils
- 1000 lb/acre pecan crop removes 1.6 lbs P per acre
- Annual turnover
- Yield response to broadcast application of P on mature pecan is extremely rare (Alben and Hammar, 1939; Worley and Harmon, 1964; Sullivan, 1974; Worley, 1974; Sparks 1988; Smith 1991;)
- Rates of >13,000 lbs P/acre only slightly increased nut size
- No benefit to annual maintenance broadcast application of P to pecans in most managed orchards
- Savings: \$20.40/acre
- If soil P<30 lbs per acre, broadcast P
- If soil P>30 lbs/acre and leaf P<0.12, band P

How Often Should You Soil Apply Potassium?

Soil K 100-150 153 23 34 94-361

- 1000 lb/acre pecan crop removes 2.3 lbs K per acre
- Annual turnover
 - 70% of total nutrient content of fruit returned to soil in shucks (Sparks, 1975)
- Yield response to broadcast application of K on mature orchards is extremely rare (Hunter and Hammar, 1947; Hunter and Hammar, 1948; Sharpe et al. 1950; Sharpe et al., 1952; Hunter, 1956; Gammon and Sharpe, 1959; Hunter and Hammar, 1961; Worley, 1974; Worley, 1994)
- No real benefit to maintenance broadcast application of K in most mature managed orchards
- Savings: \$23.40/acre
- If soil K drops below 100 lbs/acre: broadcast K
- If soil K is >100 lbs/acre and leaf K is less than 1.1: <u>band K</u>
 - Need to keep leaf K at 2:1-2.5:1 ratio with leaf N, but broadcast application will not increase leaf K to 1.25

How Often Should You <u>SOIL</u>-apply Zinc?

Soil Zn	15-20	25	28	55	3.9-55.3

- Most Coastal Plain soils not planted to pecan are very low in Zn
- Most mature orchards have high soil Zn levels
- Zn is immobile in soil
- Broadcast Zinc Sulfate when soil Zn is <15 lbs/acre
- Savings: \$25/acre
- Make annual foliar Zn applications

Banding Zn, P, and K

- Band Zn @4-5 lbs/tree
- Band K at 8 lbs/tree
- Band P at 100-120 <u>lbs/acre</u>
- Make applications over drip emmiters or in wet zone of microsprinklers
- Band Zn on opposite side of tree from P and K

Banding is a useful tool when uptake is a problem

What's the Best Way to Fertilize Pecans with Nitrogen?

- Apply 75-125 lbs N
- Inject liquid N
 - 3 applications beginning in April (10 day intervals)
 - 1 application in June
 - 1 application in late August/early September if heavy crop
 - No more than 25 lbs N/acre/injection
- Direct broadcast applications toward herbicide strip
 - Base total acreage applied on width of spread, <u>not on total size of orchard</u>
 - Use rate of 75-125 lbs/acre on treated area only
- Eliminate late season applications of N with:
 - Poultry Litter Application in Feb/March or
 - Establishment of good clover stand for 3 yrs

Fertigation of Young Trees

1st year trees: 'Cunard' on Orangeburg soil

Treatment	Caliper Growth (mm)	Leaf N
Fertigation (6.16 units N/acre)X4	5.4a	2.63a
10-10-10 (1 lb/tree)	6.5a	2.61a
Granular N (0.36 lbs/tree)X4*	7.6a	2.76a
Control (No N applied)	6.7a	2.63a

Fertilizer N materials;

Fertigation treatments = UAN (28%) (total of 0.84 lbs N per tree)

Granular N treatment=Urea (46%) (total of 0.84 lbs N/tree)

All fertigation and granular N treatments received P-K through irrigation system in April via 10.5 gal/acre of 1-6-13

Fertilizer Application Dates:

10-10-10: May 9

Fertigation & Granular N: May 9; June 28, July 12; August 6

^{*}Last granular application received 0.72 lbs material/tree to reach total of 0.84 lbs N/tree

Fertigation of Young Trees

2nd year trees: 'Cape Fear' on Red Bay soil

Treatment	Caliper Growth (mm)	Leaf N
Fertigation (12.32 units N/acre) X4	17.4ab	2.72ab
Fertigation (6.16 units N/acre) X4	21.1a	2.74a
10-10-10 (1 lb/tree) X3	19.7ab	2.72ab
Granular N (0.36 lbs/tree)X5	14.8b	2.56bc
Control (No N applied)	16.2ab	2.50c

Fertilizer N materials:

Fertigation treatments = UAN (28%)

total of 1.68 lbs N/tree and 0.84 lbs N per tree for high and low rates

Granular N treatment=Urea (46%) (total of 0.84 lbs N/tree)

All fertigation and granular N treatments received P-K through irrigation system in April via 10.5 gal/acre of 1-6-13

Fertilizer Application Dates:

10-10-10: April 23, June 28, July 12

Fertigation: April 23, June 28, July 12, August 6

Granular N: April 23, May 23, June 28, July 12, August 6

What did it take to control scab on Desirable in 2013?

4/8 Prophyt2 qts	
., o	
4/17 Super Tin 6.4 oz+Elast 25 oz	
5/2 Absolute 5 oz+Tebuzol 3 oz	
5/8 Absolute 5 oz+Tebuzol 3 oz	
5/13 Absolute 5oz+Tebuzol 3oz	
5/20 Prophyt—2qt	
6/4 Prophyt 2 qts+Super Tin 12.8 o	ΟZ
6/13 Super Tin 9.6 oz+Elast 38 oz	
6/25 Super Tin 9.6 oz+Elast 38 oz	
7/2 Quadris Top 11oz+Prophyt 1.5	qts
7/9 Super Tin 9.6 oz+Elast 50oz	
7/15 Quadris Top 11oz+Prophyt 1.5	qts
7/23 Super Tin 6.4 oz+Elast 50oz	
7/29 Super Tin 12 oz+Topsin 20 oz	
8/5 Elast 50 oz+Topsin 20 oz	
8/12 Super Tin 12 oz	

Cost: \$287.90/acre*

What did it take to control scab on Desirable in 2013?

4/8 4/16	Absolute—5oz Super Tin 12.8 oz+K-Phite 1qt
4/30	Super Tin 12.8oz+Elast 25 oz
5/14	Super Tin 12.8+ Topsin 20 oz
5/22	Absolute 5oz+Tebuzol 6.4oz+Kphite 1 qt
5/29	Elast 50 oz+Super Tin 6.4 oz
6/5	Elast 50 oz + Super Tin 6.4 oz
6/12	Quadris Top 14 oz+Sulfur 2 qts
6/21	Super Tin 12.8oz+Elast 25 oz
7/1	Quadris Top 14oz+Sulfur 1 qts
7/8	Super Tin 6.4 oz+Elast 50oz
7/15	Super Tin 12.8 oz+Topsin 20 oz+Sulfur 1 qt
7/22	Super Tin 12.8 oz+KPhite 2 qts
7/29	Syllit 50 oz+Bumper 6.4 oz
8/5	Absolute 7.5 oz+Super Tin 6.4 oz +Sulfur 1 qt
8/12	Syllit 50 oz+Super Tin 6.4 oz

Cost: \$303.25/acre*

Example: General Fungicide Spray Schedule

- Spray 1---Absolute+Phosphite
- Spray 2---Enable+Tin
- Spray 3---Enable+Tin
- Spray 4---Absolute
- Spray 5---Absolute+Phosphite
- Spray 6---Elast+Tin
- Spray 7---Elast+tin
- Spray 8---Tin

Elast/Tin sprays can be extended for several sprays if pressure warrants additional spraying

If scab pressure is low, use Super Tin alone

**Use Super Tin alone for the last spray

What made the difference in 2013?

- Air flow
- Sprayer Coverage

Fungicide spray coverage in mature trees

A decrease in spray coverage with height Up to 35 ft, spray coverage appears good

Clive Bock

The #1 Thing You Can Do to Improve Scab Control With A Sprayer: SLOW DOWN!!!!!

- 3.0 to 2.0 mph = 7.8%
- 2.0 to 1.5 mph = 29.8%
- 3.0 to 1.5 mph = 34.9%

New Aphid Products

- Closer (sulfoxaflor) from Dow
- Apta (tolfenpyrad) from Nichino Am.
 - -17-27 oz./A
 - -Controls aphids, shuckworm, PNCB, weevils
- Beleaf (flonicamid) from FMC
 - Similar to Fulfill, inhibits feeding of aphids
- Athena (bifenthrin + avermectin) from FMC
 - Insecticide/miticide, not yet labelled in GA